

Efficacy of Individual-Level Interventions to Mitigate the Risk for Burnout Among Health Care Professionals

A Systematic Review and Meta-analysis of Randomized Controlled Trials

George Collett, PhD; Jaya Gupta, MD; Abubaker Eltayeb, MBBS, MPH; Ania Korszun, MD, PhD; Linda Sharples, PhD; Kenneth Rice, PhD; and Ajay K. Gupta, MD, PhD

Background: There is limited evidence of the strategies to mitigate burnout among all health care professionals (HCPs).

Purpose: To evaluate the effectiveness of all interventions to mitigate burnout among HCPs.

Data Sources: PubMed and Scopus (up to 14 May 2025).

Study Selection: Independent study selection (2 people) of randomized controlled trials (RCTs) and cluster RCTs of interventions to mitigate burnout (vs. no active intervention) among HCPs.

Data Extraction: Independent extraction with validation by second reviewer. Continuous data for burnout outcomes extracted for emotional exhaustion (EE), depersonalization, personal accomplishment (PA), and single-concept burnout measurement. Separate random-effects models were stratified by role.

Data Synthesis: 93 RCTs and 6 cluster RCTs evaluating individual-level interventions were included (9330 participants). Among physicians, professional coaching was probably effective in reducing some aspects of burnout (EE standardized mean difference [SMD], -0.37 [95% CI, -0.62 to -0.13], low certainty; and depersonalization SMD, -0.30 [CI, -0.42 to -0.19], moderate certainty), but mindfulness-based interventions

may not be effective (EE SMD, -0.46 [CI, -1.28 to 0.35], very low certainty; depersonalization SMD, -0.09 [CI, -0.30 to 0.12], moderate certainty). However, mindfulness-based interventions may reduce burnout among nurses and midwives (EE SMD, -0.90 [CI, -1.46 to -0.34], low certainty) and among a mixture of HCP roles (EE SMD, -0.40 [-0.65 to -0.16], low certainty; depersonalization SMD, -0.33 [CI, -0.53 to -0.14], low certainty; and PA SMD, 0.48 [CI, 0.29 to 0.67], moderate certainty). Mindfulness-based and professional coaching interventions were generally more than 4 weeks in duration.

Limitations: Most trials were unblinded with subjective outcomes. There was substantial heterogeneity among interventions and populations despite stratifying by role.

Conclusion: Although mindfulness-based interventions may reduce burnout in nurses and midwives and among a mixture of HCPs, professional coaching probably reduces burnout among physicians, particularly when sustained for more than 4 weeks.

Primary Funding Source: Barts Charity. (PROSPERO: CRD42024552385)

Ann Intern Med. doi:10.7326/ANNALS-25-00469

For author, article, and disclosure information, see end of text.

This article was published at Annals.org on 18 November 2025.

In recent years, health care professionals (HCPs) worldwide have been exposed to a sustained period of stress due to limited resources, economic difficulties, and the COVID-19 pandemic. Studies have shown excessive mental health burdens among HCPs (1), and burnout seems to be a constant threat (2, 3). Although there is no single definition of burnout and its validity has been contested (4, 5), it is often described as a work-related syndrome primarily consisting of high levels of emotional exhaustion (EE) (6). Burnout is also said to consist of depersonalization (negative and cynical attitudes about one's clients/patients/colleagues) and a sense of low personal accomplishment (PA), which can occur separately from EE (6).

In the United States, the reported prevalence of burnout among HCPs has increased from 45% in 2019 to 60% in late 2021 (7). This may have an adverse impact on staff retention (8), absenteeism (9), and quality of patient care (10). Indeed, recent strikes by staff in

the U.K.'s National Health Service were thought to be driven by EE in addition to other issues such as reduced quality of patient care and support for staff and lack of appropriate recognition (11). Interventions to reduce burnout can be at the individual or organizational level, although most studies have focused on individual-level interventions. Furthermore, previous systematic reviews and meta-analyses of individual strategies to mitigate burnout focus only on specific roles (for example, nurses or physicians only [12-15]) or

See also:

Editorial comment

Web-Only

Supplemental material

Annals Video Summary

specific interventions (16), or often do not comprehensively stratify by intervention type (14, 15). Understanding the effectiveness of different interventions to reduce burnout among the breadth of HCPs may help policymakers consider the effectiveness of individual options to reduce burnout, for reduced staff attrition and improved patient care.

The aim of this systematic review and meta-analysis is to identify and summarize published randomized controlled trials (RCTs) evaluating all interventions to reduce burnout among all HCPs and evaluate their efficacy within specific roles.

METHODS

This systematic review and meta-analysis was prospectively registered in PROSPERO (ID: CRD42024552385). Analysis and reporting followed PRISMA (Preferred Reporting Items for Systematic reviews and Meta-Analyses) principles.

Data Sources and Searches

The full search strategy is provided in the Supplement (available at Annals.org). Briefly, PubMed and Scopus were searched for all RCTs and cluster RCTs, published all years, on 14 May 2025. Studies were included if published in English language, using commonly used terms in the title or abstract to describe RCTs and cluster RCTs among HCPs, evaluating interventions to mitigate burnout (vs. no active intervention or routine provisions), and reporting continuous outcomes related to burnout. Filters for study design were not applied to avoid omitting relevant articles.

Study Selection

Studies were included if they had an RCT or cluster RCT design and had the following characteristics: 1) conducted for HCPs directly involved in patient care who were aged 18 years or older, 2) evaluated modifiable intervention strategies evaluated against no active intervention, and 3) included a continuous outcome related to burnout, measured using validated assessment tools. Studies involving both HCPs and non-HCPs—or solely involving informal caregivers, social workers, care home staff, domiciliary care workers, or administrative staff—were excluded. Studies evaluating interventions against an active control group were also excluded.

Articles retrieved from the search were exported from the databases and entered into a spreadsheet. Duplicate articles were removed. Articles were screened independently by 2 authors (G.C. and A.E.) against the inclusion-exclusion criteria based on the title and the abstract and were excluded if they did not meet all criteria. The full text of the remaining articles was reviewed in detail against inclusion-exclusion criteria.

Data Extraction and Quality Assessment

Data collection was performed solely by the first author manually extracting: 1) study identification: first

author, reference, and year; 2) study and population characteristics: country, sample size, sample occupation, and age; 3) intervention characteristics: intervention type, duration, and control; 4) outcome measure; and 5) point estimate (posttest mean values) and uncertainty of intervention efficacy measurement (CIs, SEs, SDs). The data extracted were spot-checked by a second author (A.E.). The risk of bias for RCTs and cluster RCTs was assessed using the Cochrane risk-of-bias tool for randomized trials (RoB2) macro and the Cochrane RoB2 CRT macro, respectively. Risk of bias was evaluated independently by 2 authors (G.C. and A.E.). The quality (certainty) of evidence for subgroups (stratified by intervention type and target role) of 3 or more studies was assessed for EE, depersonalization, and PA independently by 3 authors (G.C., A.E., and J.G.) using the GRADE (Grading of Recommendations Assessment, Development and Evaluation) approach.

Data Synthesis and Analysis

The analysis was performed using Stata v.17.0. Postintervention mean scores and SDs for both active intervention and control groups were extracted, and—if mean scores were unavailable—the change in mean scores from preintervention to postintervention was extracted (17). If neither was available, then the reported effect size was converted to the Cohen *d*, which was then used in meta-analyses of standardized mean difference (SMD) only (18, 19). Just 1 study ([20] reporting partial η^2) required this procedure. The earliest postintervention assessment was used in the meta-analysis. Missing SDs were reconstructed based on SEs and/or 95% CIs.

Separate meta-analyses (within each HCP role stratified by intervention type) were performed on each component of burnout (EE, depersonalization, and PA) and for single-concept burnout measures (6) such as the Professional Quality of Life (ProQOL) burnout subscale. Any contrasts between published analysis and preplanned protocol are per the *Annals* deputy editor's request: the preplanned protocol did not specify conducting separate meta-analysis *within* separate HCP roles. Higher scores on EE, depersonalization, and single-concept burnout measures indicate a higher degree of burnout, whereas higher scores on PA domains indicate a lower degree of burnout. The SMDs and their 95% CIs for each study were calculated, and overall SMDs and 95% CIs were obtained for each subgroup from fitting random-effects models using restricted maximum likelihood due to anticipated heterogeneity. Heterogeneity was formally assessed by the I^2 statistic (21). Studies were grouped by intervention type according to the core focus of the intervention. Due to the potential limitations of calculating SMDs across different scales (22), as supplementary analysis we estimated the unstandardized mean differences (MDs) using random-effects models for the most commonly used scales in these studies: the Maslach

Table. Summary Table for the Efficacy of Each Intervention Type (vs. No Active Intervention) on Burnout

Intervention Type	Burnout Domain	Trials, n (Participants)	SMD (95% CI)	GRADE Strength of Evidence
Physicians*				
Mindfulness-based	EE	7 (n = 375)	−0.46 (−1.28 to 0.35)	⊕○○○ Very low††\$
	DP	7 (n = 375)	−0.09 (−0.30 to 0.12)	⊕⊕○○ Moderate†
	PA	5 (n = 195)	0.43 (−0.48 to 1.34)	⊕○○○ Very low††\$¶
Job-role training	EE	3 (n = 265)	−0.11 (−0.35 to 0.13)	⊕○○○ Very low††\$¶
Resilience, well-being, stress management	EE	3 (n = 205)	−0.76 (−1.48 to −0.03)	⊕○○○ Very low††\$
Debriefing/support/ Balint groups	EE	3 (n = 183)	−0.18 (−0.88 to 0.53)	⊕○○○ Very low††\$
	DP	3 (n = 183)	−0.31 (−0.94 to 0.32)	⊕○○○ Very low††\$
	PA	3 (n = 183)	0.01 (−0.51 to 0.53)	⊕○○○ Very low††\$¶
Professional coaching	EE	7 (n = 1145)	−0.37 (−0.62 to −0.13)	⊕⊕○○ Low†‡
	DP	7 (n = 1155)	−0.30 (−0.42 to −0.19)	⊕⊕○○ Moderate†
	PA	4 (n = 681)	0.22 (−0.02 to 0.46)	⊕○○○ Very low††\$¶
Nurses and midwives**				
Mindfulness-based	EE	8 (n = 511)	−0.90 (−1.46 to −0.34)	⊕⊕○○ Low†‡
	DP	8 (n = 511)	−0.34 (−0.73 to 0.05)	⊕○○○ Very low ††\$
	PA	7 (n = 443)	1.31 (0.32 to 2.31)	⊕○○○ Very low††\$
Job-role training	EE	6 (n = 411)	−0.33 (−0.81 to 0.15)	⊕○○○ Very low††\$
	DP	6 (n = 411)	−0.39 (−0.90 to 0.11)	⊕○○○ Very low ††\$
	PA	5 (n = 329)	0.20 (−0.04 to 0.43)	⊕⊕○○ Moderate†
Debriefing/support/ Balint groups	EE	3 (n = 284)	−0.65 (−1.73 to 0.43)	⊕○○○ Very low ††\$
	DP	3 (n = 284)	−1.10 (2.88 to 0.67)	⊕○○○ Very low ††\$
	PA	3 (n = 284)	0.83 (−0.36 to 2.02)	⊕○○○ Very low††\$¶
Multifaceted including mindfulness	EE	3 (n = 276)	−1.05 (−1.90 to −0.20)	⊕○○○ Very low††\$¶
Mixed roles or a mixture of HCPs††				
Mindfulness-based	EE	8 (n = 511)	−0.40 (−0.65 to −0.16)	⊕⊕○○ Low†‡
	DP	7 (n = 610)	−0.33 (−0.53 to −0.14)	⊕⊕○○ Low†‡
	PA	6 (n = 532)	0.48 (0.29 to 0.67)	⊕⊕○○ Moderate†
Multifaceted interventions	EE	4 (n = 534)	−0.45 (−0.68 to −0.23)	⊕⊕○○ Low†‡
Alternative interventions	EE	3 (n = 344)	−0.37 (−0.79 to 0.06)	⊕○○○ Very low†‡
	DP	3 (n = 341)	−0.29 (−0.78 to 0.21)	⊕○○○ Very low††\$

DP = depersonalization; EE = emotional exhaustion; GRADE = Grading of Recommendations Assessment, Development and Evaluation; HCP = health care professional; PA = personal accomplishment; SMD = standardized mean difference.

* "Physicians" section: Studies not reported for EE: 1 trial evaluated multifaceted interventions and 1 trial evaluated psychological therapy. Studies not reported for DP: 2 trials evaluated job-role training; 1 trial evaluated resilience, well-being, and stress management; and 1 trial evaluated psychological therapies. Studies not reported for PA: 2 trials evaluated job-role training and 1 trial evaluated resilience, well-being, and stress management.

† Reduced quality of evidence due to high risk of bias associated with unblinded interventions.

Continued on following page

Table-Continued

‡ Reduced quality of evidence due to inconsistency (substantial heterogeneity) in pooled estimate.

§ Reduced quality of evidence due to imprecision in pooled estimate.

|| Heterogeneity >85%.

¶ Reduced quality of evidence due to indirectness in intended target role.

** "Nurses and midwives" section: Studies not reported for EE: 1 trial evaluated art-based mindfulness; 2 trials evaluated resilience, well-being, and stress-management; 2 trials evaluated psychological therapy; 1 trial evaluated pharmacologic-dietary supplementation; 1 trial evaluated motivation-gratitude; 2 trials evaluated alternative therapies; and 1 trial evaluated physical activity. Studies not reported for DP: 1 trial evaluated multifaceted interventions; 1 trial evaluated art-based mindfulness; 2 trials evaluated resilience, well-being, and stress-management; 2 trials evaluated psychological therapies; 1 trial evaluated pharmacologic-dietary supplementation; 1 trial evaluated motivation-gratitude; 2 trials evaluated alternative therapies; and 1 trial evaluated physical activity. Studies not reported for PA: 2 trials evaluated multifaceted interventions; 1 trial evaluated art-based mindfulness; 1 trial evaluated resilience, well-being, and stress-management; 1 trial evaluated psychological therapies; 1 trial evaluated motivation-gratitude; 2 trials evaluated alternative therapies; and 1 trial evaluated physical activity.

†† "Mixed roles or a mixture of HCPs" section: Studies not reported for EE: 2 trials evaluated art-based mindfulness; 2 trials evaluated job-role training; 2 trials evaluated resilience, well-being, and stress management; and 1 trial evaluated pharmacologic-dietary supplementation. Studies not reported for DP: 2 trials evaluated multifaceted interventions, 1 trial evaluated art-based mindfulness, and 2 trials evaluated job-role training. Studies not reported for PA: 2 trials evaluated multifaceted interventions, 1 trial evaluated art-based mindfulness, 2 trials evaluated job-role training, and 1 trial evaluated alternative therapies.

Burnout Inventory (MBI) subscales (MBI-EE, MBI-depersonalization, MBI-PA) and the ProQOL burnout subscale to evaluate for effect size.

As supplementary analysis, random-effect meta-regression was used to estimate the association between burnout subscales and potential explanatory variables: mindfulness-based versus non-mindfulness-based interventions, pandemic versus nonpandemic study period, targeted role (physicians vs. nurses or midwives, a mixture of various HCPs, and other: anesthetists, physiotherapists, psychologists, ambulance crew members), intervention duration (<4 weeks vs. 4 to 12 weeks, and >12 weeks), and delivery (instructor led vs. self-delivered, combined, or other). Meta-regressions for MDs for most commonly used scales (MBI-EE, MBI-depersonalization, MBI-PA, and ProQOL burnout subscale) were also developed using the same variables described in this paragraph in addition to baseline burnout score in the intervention group.

Role of the Funding Source

This work was supported by Barts Charity project grants (G-002045 and G-002649). The funders had no role in the study design, collection, analysis, or interpretation of the data, or in the writing of the report.

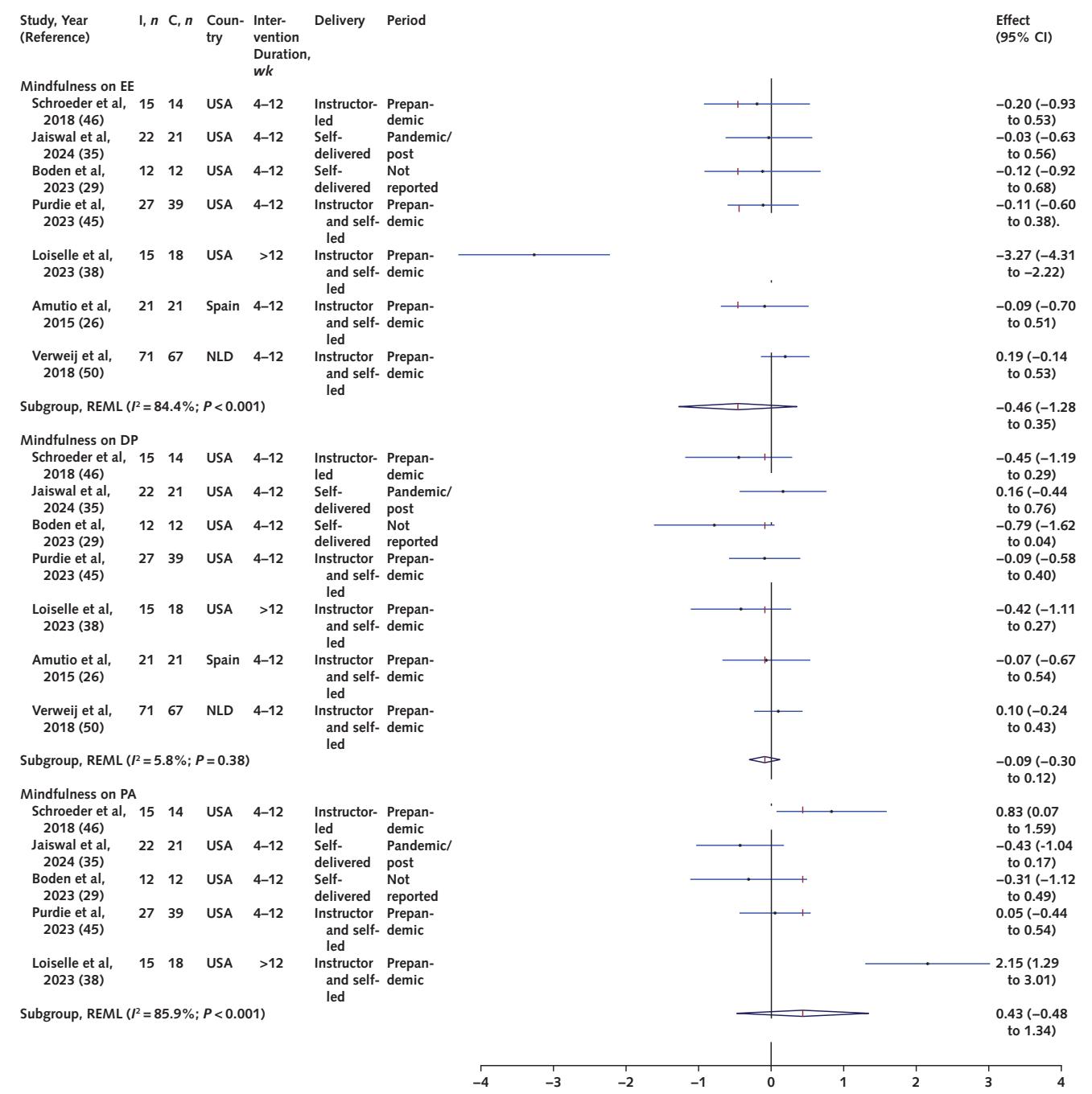
RESULTS

Study Selection

After excluding duplicates, 1617 unique studies were identified (Appendix Figure for flow chart). Based on abstract and/or full-text review, 1518 did not meet all selection criteria, leaving 99 studies (93 RCTs and 6 cluster RCTs) for inclusion in the meta-analyses, including a total of 9330 participants.

Study Characteristics

Supplement Table 1 (available at Annals.org) summarizes the characteristics of included studies. All interventions were conducted at the individual level.


Of the 99 studies, 47 studies of 3815 participants evaluated mindfulness-based interventions or included

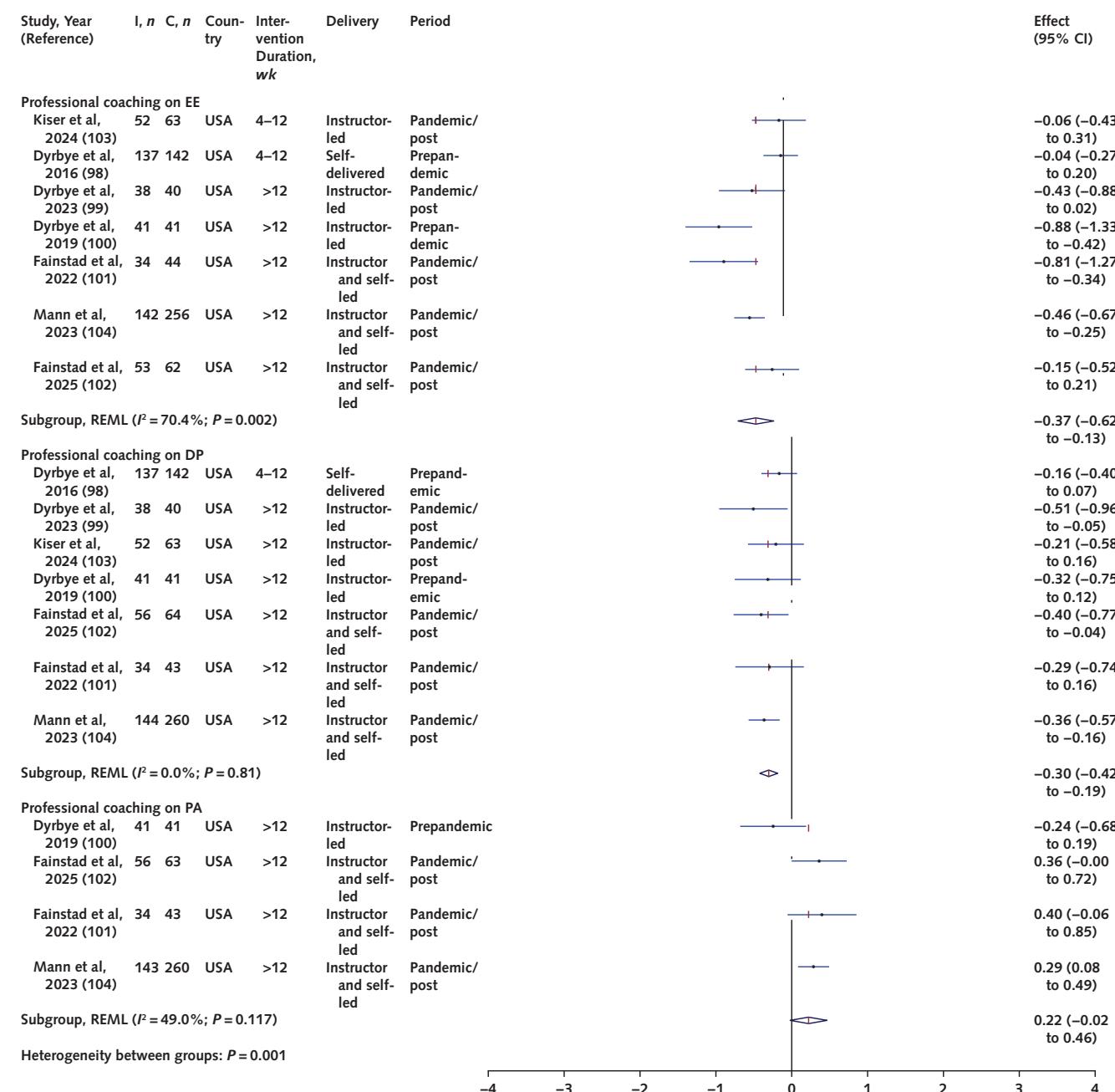
a mindfulness component as part of their intervention. Of these 47 studies, 29 implemented guided mindfulness-specific programs or yoga-meditation programs (23-51), 15 incorporated mindfulness practice into multifaceted programs (52-66), and 3 used art-based mindfulness (67-69).

Of the remaining 52 intervention studies that did not report mindfulness as a component, 10 (1665 participants) involved resilience or stress-management training (65, 70-79), 12 (777 participants) involved skills training specific to performing one's job role effectively (job-role training) (80-91), 6 (456 participants) involved debriefing support and Balint group sessions (92-97), 7 (1155 participants) involved professional coaching (goal setting, work-life balance, and developing a sense of purpose in one's profession) (98-104), 5 (383 participants) involved psychological therapies such as cognitive behavioral and imagery competing (105-109), 2 (195 participants) implemented pharmacologic-dietary interventions (20, 110), 3 (331 participants) implemented motivational or gratitude messaging (111-113), and 7 (553 participants) implemented alternative therapies such as listening to music, oil inhalation, creative arts therapy, chemotherapy, and Chinese traditional medicines (114-120). One of the mindfulness-yoga-specific studies also evaluated aerobic exercise as part of a 3-arm trial (31).

Nurses were the only participants in 42 studies (Supplement Table 1 for references); 27 studies included exclusively physicians/physician trainees/surgeons; 25 studies included a mixture of HCP roles; and 1 study was exclusive to each of trainee anesthetists (111), physiotherapists (85), psychologists (56), community health workers (77), and ambulance crew members (78).

The shortest interventions were a single 4.5-hour multifaceted workshop (52) and alternative oil-inhalation therapy (118) and short-format resilience (75) programs that were both 2 days in duration; other interventions ranged from 2 weeks (116) to 10 months (111). Most studies reported immediate follow-up conducted at the end of the intervention, whereas 8 studies reported a

Figure 1. Forest plot (standardized mean difference) by intervention type for the effect of interventions on EE vs. no active intervention among physicians.*Continued on following page*

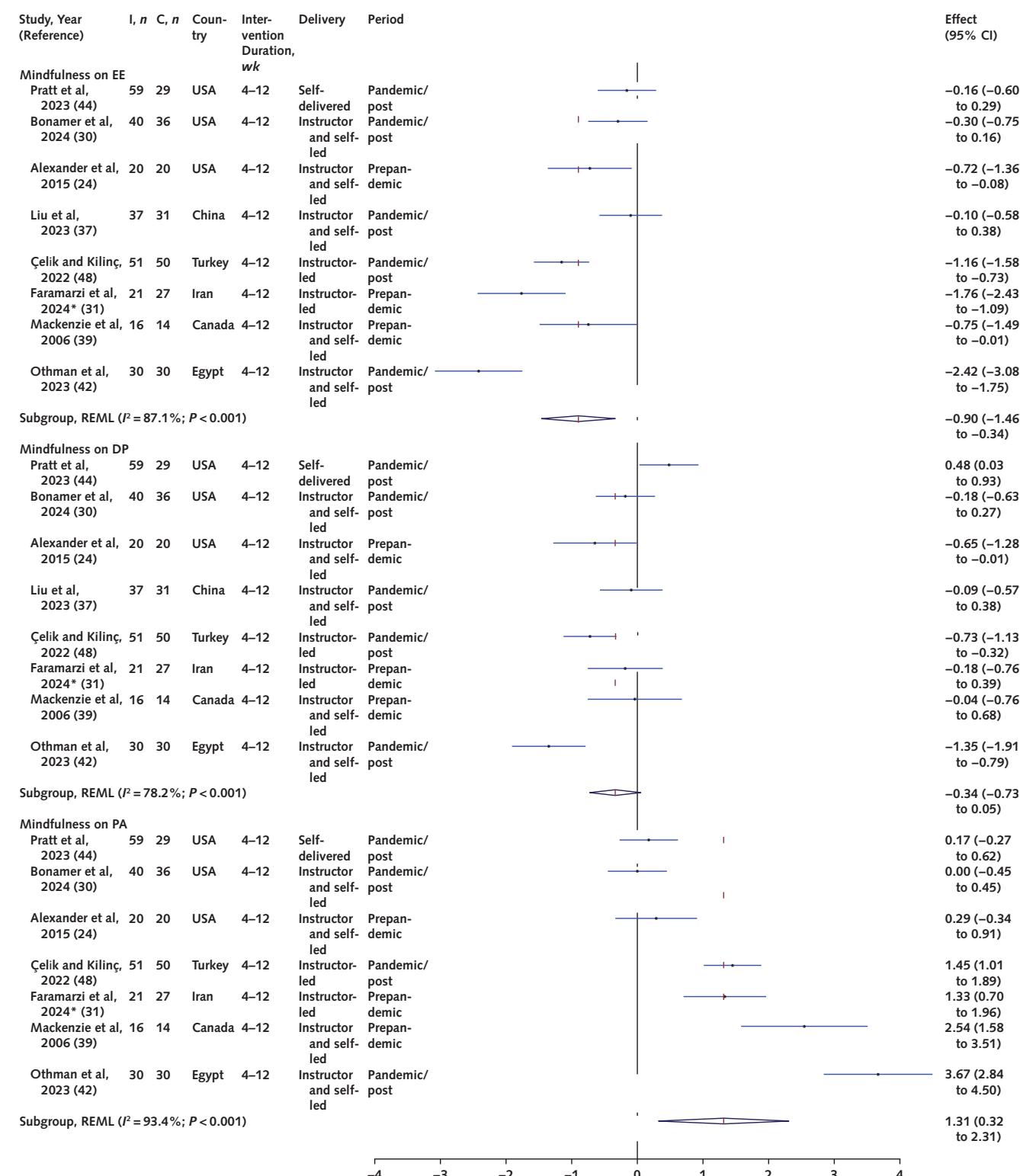

lag period between the end of the intervention and the postintervention assessment (63, 64, 74, 76, 77, 82, 84, 92).

Seventy-one studies used MBI subscales (Supplement Table 1), 14 used the ProQOL burnout subscale, 3 used the Shirom-Melamed Burnout Questionnaire or Shirom-Melamed Burnout Scale (55, 56, 61), 5 used the Copenhagen Burnout Inventory (59, 66, 69, 91, 111), 1

used the Oldenburg Burnout Inventory (70), 1 used the Scale of Work Engagement and Burnout burnout subscale (107), 3 used the Professional Fulfillment Index burnout subscale ([41, 63, 103] 1 of which also used MBI subscales), and 1 used the Compassion Fatigue burnout subscale (112).

Three RCTs (31, 75, 106) were 3-arm trials evaluating 2 separate interventions versus no active intervention.

Figure 1—Continued.


Weights and the between-subgroup heterogeneity test are from the random-effects model. C = control group; DP = depersonalization; EE = emotional exhaustion; I = intervention group; NLD = the Netherlands; PA = personal accomplishment; REML = restricted maximum likelihood; USA = United States.

Risk of Bias in Studies and Grade of Evidence

Supplement Table 2 displays the summary of RoB assessment for the 93 RCT and 6 cluster RCT studies. Of the 93 RCTs, 91 were rated overall high risk of bias. All 6 cluster RCTs were rated overall high risk of bias. The high risk of bias was driven predominantly by the unblinded nature of the interventions in most studies (96%; see Supplement Tables 3 and 4 for each RoB domain).

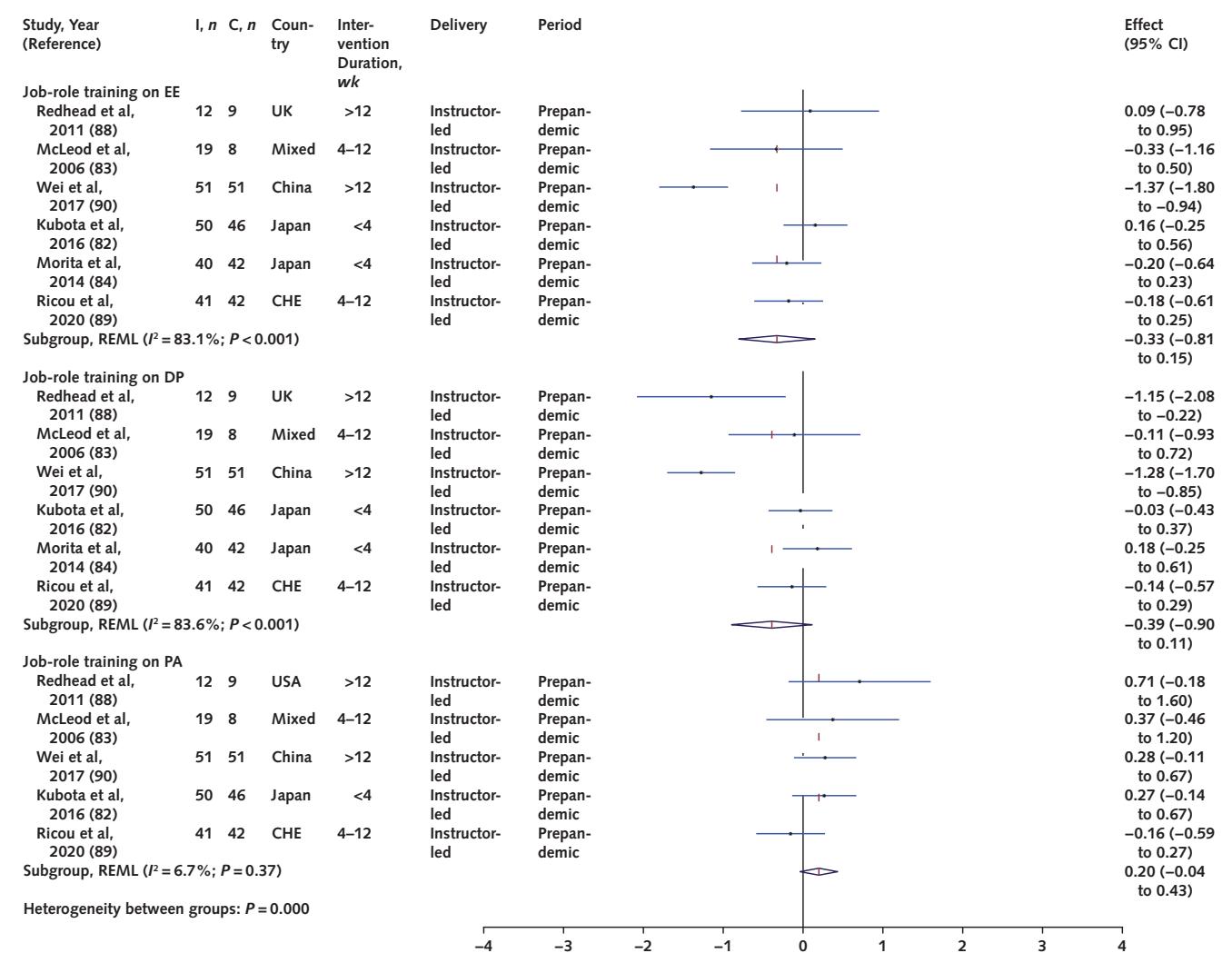

The Table shows the GRADE strength-of-evidence assessment for different intervention types in specific target roles on each burnout domain. Summary statistics and GRADE assessments are not presented for subgroups with fewer than 3 studies. Most subgroups were rated very low grade of evidence. Forest plots for subgroups (by intervention type) with more than 3 studies within each HCP role are presented in Figures 1 to 3.

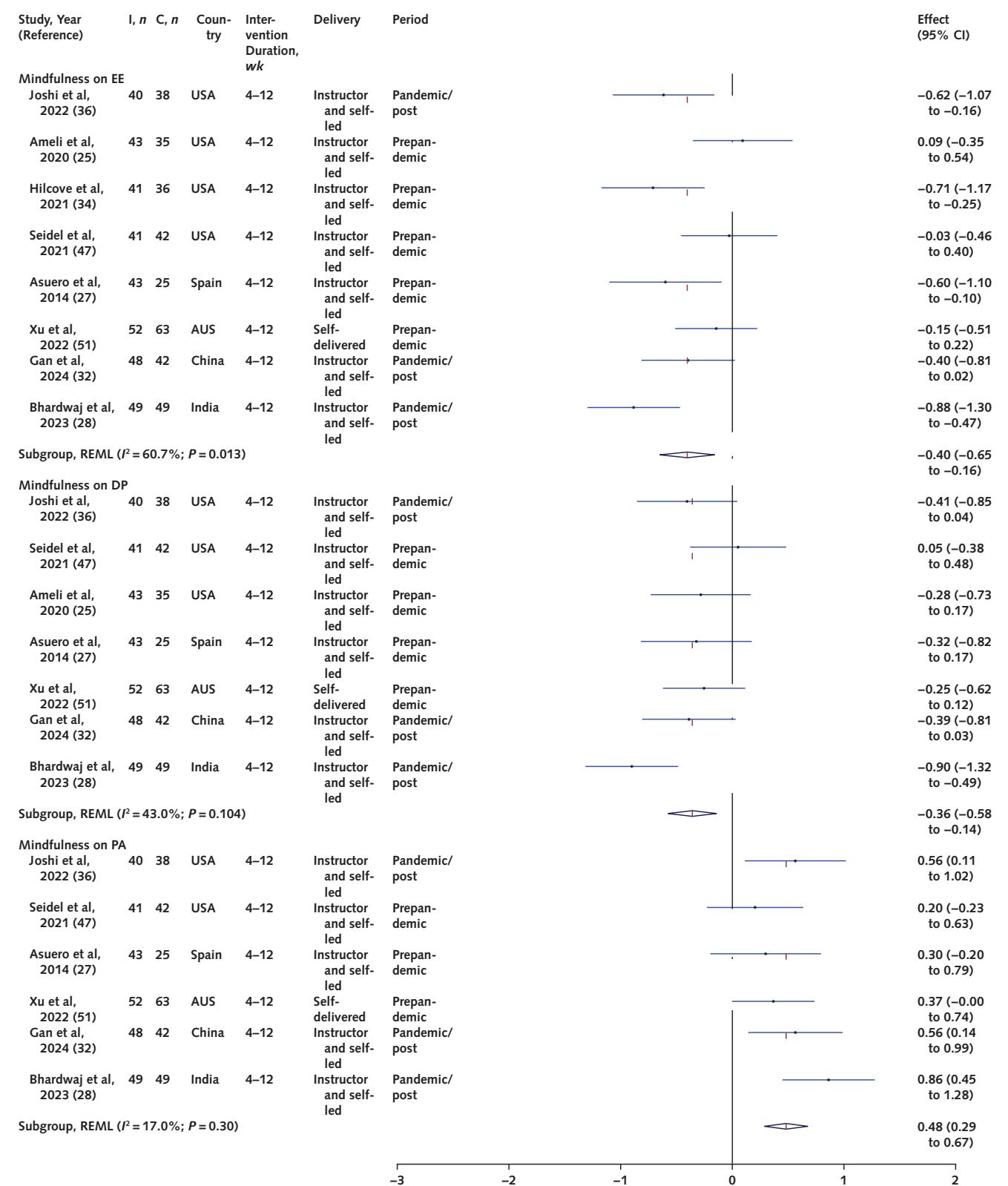
Figure 2. Forest plot (standardized mean difference) by intervention type for the effect of interventions on DP vs. no active intervention among nurses and midwives.

Continued on following page

Figure 2—Continued.

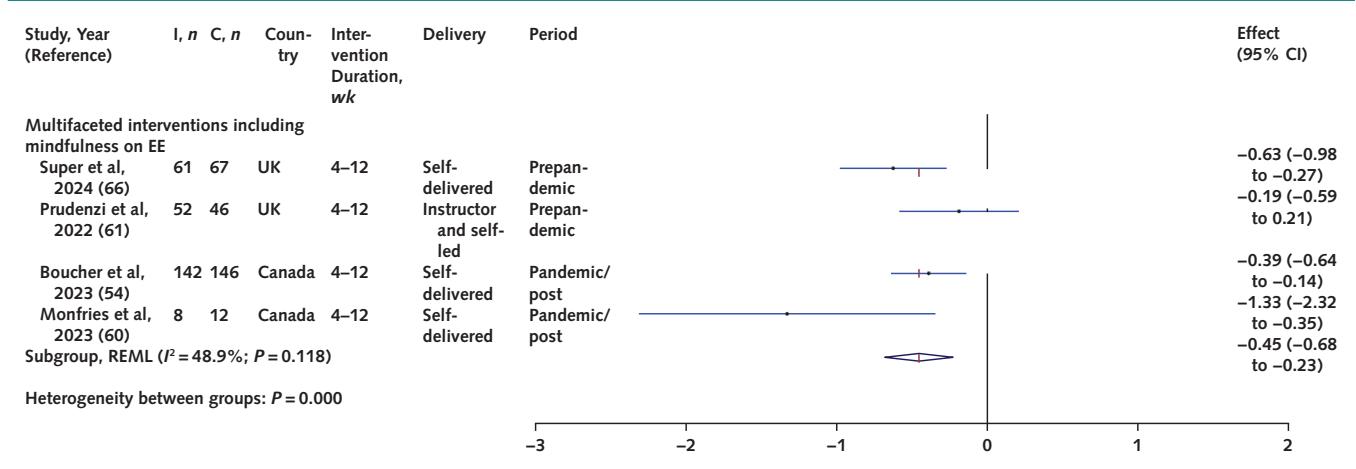
Weights and the between-subgroup heterogeneity test are from the random-effects model. C = control group; CHE = Switzerland; DP = depersonalization; EE = emotional exhaustion; I = intervention group; PA = personal accomplishment; REML = restricted maximum likelihood; USA = United States.

* Faramarzi et al, 2024, is a 3-arm trial. These data represent the first arm of the trial (yoga).


Effectiveness of Interventions in Reducing Burnout Among Physicians

Among physicians, job-role training ($n = 3$); resilience, well-being, and stress management ($n = 3$); and debriefing/support/Balint groups ($n = 3$) provided very low certainty of evidence on burnout outcomes. Seven studies provided low and moderate certainty evidence for the effect of mindfulness-based interventions ($n = 7$) and professional coaching ($n = 7$) for some burnout outcomes among physicians (Table). Figure 1 shows the meta-analysis (by intervention type) of SMDs for interventions among physicians (full plots in Supplement Figure 1, available at Annals.org). There was moderate certainty of evidence that mindfulness-based interventions probably do not reduce depersonalization (SMD, -0.09 [95% CI, -0.30 to 0.12]) and very low certainty of any effect on EE and PA with high heterogeneity ($I^2 = 84.4\%$ and 85.9%),

which was reduced with omitting an outlier (38) ($I^2 = 0.0\%$ and 58.2%) (Supplement Figure 2). There was low certainty of evidence that professional coaching may lead to a small reduction in EE (SMD, -0.37 [CI, -0.62 to -0.13]; $I^2 = 70.4\%$), moderate certainty that professional coaching probably leads to a small reduction in depersonalization (SMD, -0.30 [CI, -0.42 to -0.19]; $I^2 = 0.0\%$), and very low certainty that professional coaching may lead to a small increase in PA (SMD, 0.22 [CI, -0.02 to 0.46]; $I^2 = 49.0\%$). Supplementary random-effects meta-analysis of unstandardized MDs showed similar associations (Supplement Figure 3).


Effectiveness of Interventions in Reducing Burnout Among Nurses or Midwives

Three studies provided very low certainty evidence on debriefing/support/Balint groups ($n = 3$) and multi-faceted interventions incorporating mindfulness ($n = 3$)

Figure 3. Forest plot (standardized mean difference) by intervention type for the effect of different intervention types on PA vs. no active intervention among a mixture of various HCPs.

Continued on following page

Figure 3—Continued.

Weights and the between-subgroup heterogeneity test are from the random-effects model. AUS = Australia; C = control group; DP = depersonalization; EE = emotional exhaustion; I = intervention group; PA = personal accomplishment; REML = restricted maximum likelihood; USA = United States.

on burnout outcomes among nurses and midwives. Mindfulness-based interventions ($n = 8$) and job-role training ($n = 6$) had sufficient evidence for some burnout outcomes among nurses and midwives (Table). Figure 2 shows the meta-analysis (by intervention type) of SMDs for interventions among nurses or midwives (full plots in Supplement Figure 4). There was low certainty that mindfulness-based interventions may result in a large reduction in EE (SMD, -0.90 [CI, -1.46 to -0.34]; $I^2 = 87.1\%$) and moderate certainty of evidence that job-role training may have small incremental improvement in PA (SMD, 0.20 [CI, -0.04 to 0.43]; $I^2 = 6.7\%$) among nurses and midwives but very low certainty for other burnout outcomes. Heterogeneity remained statistically significant after omitting an outlier (42) when estimating the effect of mindfulness-based interventions on EE ($I^2 = 78.7\%$) (Supplement Figure 5). Random-effects meta-analysis of unstandardized MDs showed similar associations (Supplement Figure 6).

Supplement Figure 7 reports the sensitivity analyses excluding outliers (62) for the effect of multifaceted interventions incorporating mindfulness on single-concept burnout outcomes (SMD, -0.58 [CI, -0.89 to -0.28]; $I^2 = 44.8\%$) among nurses and midwives (see Supplement Figure 8 for plots including other HCP roles).

Effectiveness of Interventions in Reducing Burnout Among a Mixture of Various HCPs

Among a mixture of HCPs, mindfulness-based interventions ($n = 8$) and multifaceted interventions incorporating mindfulness ($n = 4$) provided low-certainty evidence on some burnout outcomes, and 3 studies of alternative interventions provided very-low-certainty evidence ($n = 3$) (Table). Figure 3 shows the meta-analysis (by intervention type) of SMDs for interventions among a mixture of various HCPs (full plots in Supplement Figure 9). There was low certainty that mindfulness-based interventions may result in a

small-to-moderate reduction in EE (SMD, -0.40 [CI, -0.65 to -0.16]; $I^2 = 60.7\%$) and a small reduction in depersonalization (SMD, -0.36 [CI, -0.58 to -0.14]; $I^2 = 43.0\%$), and moderate certainty that mindfulness-based interventions probably result in moderate improvement in PA (SMD, 0.48 [CI, 0.29 to 0.67]; $I^2 = 17.0\%$). There was low certainty that multifaceted interventions incorporating mindfulness may result in a moderate reduction in EE (-0.45 [-0.68 to -0.23]; $I^2 = 48.9\%$) (Table). Supplementary random-effects meta-analysis of unstandardized MDs showed similar associations (Supplement Figure 10).

DISCUSSION

This meta-analysis evaluated the efficacy of different intervention types aiming to reduce burnout (vs. no active intervention) within different professional roles. First, we found differential efficacy of interventions for different roles: there was cumulative evidence of low certainty that mindfulness-meditation-based interventions may result in a large reduction in EE among nurses and midwives and may result in a small-to-moderate reduction in EE among a mixture of various HCP samples, but not among physicians, whereas there was low certainty that professional coaching may result in a small reduction in EE among physicians. Most of these studies of mindfulness-based and professional coaching interventions were longer than 4 weeks, highlighting the need for adequate allocation of resources for broader implementation. Although there may be interest in peer-support or debriefing groups, most other interventions had very-low-certainty evidence due to high risk of bias, substantial heterogeneity, and imprecision in the pooled estimates.

The core component of burnout is EE. Our finding that mindfulness-based interventions may reduce EE among nurses and midwives and a mixture of HCPs,

but not physicians, extends previous meta-analyses (16) by stratifying by role. Our observations regarding the benefit of professional coaching among physicians are consistent with a previous meta-analysis (121), although certainty was low and the benefit of professional coaching to other roles remains uncertain (98–101, 103, 104). To understand whether these reductions are clinically meaningful, our estimated unstandardized effect of mindfulness-meditation-based interventions on nurses and midwives and a mixture of HCPs found a reduction in MBI-EE scores (scale, 0 to 48) by 9.33 units and by 4.84 units, respectively, albeit with high heterogeneity. For physicians, professional coaching reduced MBI-EE scores by 3.66 units. Previous studies have shown that a 1-unit increase in MBI-EE is associated with an at least 5% increased risk for self-perceived major medical errors among physicians (122) and surgeons (123).

Regarding depersonalization (negative and cynical attitudes about one's clients/patients/colleagues), mindfulness-based programs may reduce depersonalization among a mixture of various HCP samples, and our finding that professional coaching was significantly associated with reduced depersonalization among physicians is consistent with a previous meta-analysis (121). Both mindfulness and professional coaching can help improve self-awareness and awareness of one's work surroundings thus helping to regulate emotional reactivity, leading to reduced EE and reduced cynicism toward one's work (124, 125). The moderate grade of evidence for the impact of professional coaching on depersonalization among physicians will also be reassuring for policymakers.

A sense of achievement and competence in one's work defines PA. Although there was cumulative evidence of moderate-certainty that mindfulness-meditation-based interventions improved PA for a mixture of HCPs, evidence was of very low certainty among nurses and midwives. For nurses and midwives, the cumulative evidence suggests that job-role training may have small incremental, albeit statistically insignificant, improvement in PA. This observation was unsurprising given that job-role training would likely improve HCPs' perceived work ability and professional confidence.

Burnout is less often measured as a single concept, with 1 meta-analysis including single-concept burnout measures by the ProQOL, although it did not stratify by intervention types (126). Likewise, we could not draw substantial conclusions for most roles and interventions due to the few studies measuring this outcome. However, our sensitivity analysis suggested that multifaceted interventions may be associated with a reduction in burnout among nurses and midwives.

This study has strengths and limitations. The key strength is the large number of studies and participants, which allowed us to explore the effectiveness of different types of interventions among different professional roles. Despite this, there are a few limitations.

First, there was statistically significant heterogeneity within most intervention-type subgroups even when stratified by role, and this heterogeneity remained when limiting to consistent burnout measurements. We speculate that heterogeneity may be explained by variations in delivery duration and intensity (longer duration may be associated with a larger effect in meta-regression analysis; **Supplement Tables 5 and 6**), as well as method within each intervention type, and potentially within each target role (for example, those in intensive care units may differ to those in other settings). Drawing on this, as a caveat, most mindfulness-based and professional coaching interventions were between 4 and 12 weeks, so it is difficult to determine the extent that the efficacy of these interventions is driven by their content or by their duration. Furthermore, one may also consider whether baseline burnout levels may influence the magnitude of the effect (increased burnout levels in the intervention group at baseline were associated with a greater magnitude of effect on MBI-EE scores in meta-regression analyses (**Supplement Table 6**)). Given the substantial heterogeneity, further research should focus on the most effective design and delivery method of different interventions for specific roles, and whether there might be differences among genders and cultural backgrounds within roles.

Second, almost all studies were high risk of bias, primarily driven by unblinded interventions with subjective outcomes. In all but 2 studies (110, 118), the designs were inherently open label, so that estimates of intervention effects on burnout may be impacted by participants' awareness of the allocated intervention. The direction of any resulting bias is unclear and depends on participants' attitudes toward their allocated intervention. Moreover, it is difficult to determine whether any effect is due to the intervention itself or, if applicable, to breaks from work to attend the intervention. Furthermore, interventions may have the counterproductive effect of increased work burden as the intervention may be an additional task in addition to normal work and other duties.

Finally, despite including cluster RCT designs in our criteria, all studies in this meta-analysis focused on individual-level interventions and do not account for organizational-level strategies and factors that drive burnout (3, 127). Indeed, most support for the value of organizational-level strategies in mitigating burnout is provided by observational studies (128–130), and few studies have evaluated organizational-level interventions in experimental designs.

In conclusion, this comprehensive study of the literature—based on the RCT evidence only—suggests mindfulness-based interventions may be effective to reduce EE for nurses and midwives and a mixture of HCPs, but not for physicians, whereas professional coaching may reduce emotional exhaustion and probably reduces depersonalization among physicians. The interventions in these studies were implemented

for at least 4 weeks. Studies in this review focused on individual-level interventions, and policymakers must not neglect the organizational-level drivers of burnout. These findings will be valuable to policymakers developing support strategies, especially given the health care shortages and high rates of burnout, particularly among primary care physicians and nurses around the world.

From Clinical Pharmacology and Precision Medicine, William Harvey Research Institute, Queen Mary University of London, London, United Kingdom (G.C., A.E.); South West London and St George's Mental Health NHS Trust, London, United Kingdom (J.G.); Wolfson Institute of Population Health, Queen Mary University of London, London, United Kingdom (A.K.); London School of Hygiene & Tropical Medicine, London, United Kingdom (L.S.); Department of Biostatistics, University of Washington, Seattle, Washington (K.R.); and Clinical Pharmacology and Precision Medicine, William Harvey Research Institute, Queen Mary University of London, London; Barts Heart Centre, St Bartholomew's Hospital, Barts Health NHS Trust, London; Department of Clinical Pharmacology, The Royal London Hospital, Barts Health NHS Trust, London; and National Heart and Lung Institute, Imperial College London, London, United Kingdom (A.K.G.).

Grant Support: By Barts Charity grants G-002045 and G-002649.

Disclosures: Disclosure forms are available with the article online.

Reproducible Research Statement: *Study protocol:* Available from <https://www.crd.york.ac.uk/PROSPERO/view/CRD42024552385>. *Statistical code and Data set:* Available on request from the corresponding author.

Corresponding Author: Ajay Gupta, William Harvey Heart Centre, William Harvey Research Institute, Barts and London Medical School, Queen Mary University of London, London, UK; e-mail, ajay.gupta@qmul.ac.uk.

Author contributions are available at Annals.org.

References

- Lee BEC, Ling M, Boyd L, et al. The prevalence of probable mental health disorders among hospital healthcare workers during COVID-19: a systematic review and meta-analysis. *J Affect Disord.* 2023;330:329-345. [PMID: 36931567] doi:10.1016/j.jad.2023.03.012
- Sexton JB, Adair KC, Proulx J, et al. Emotional exhaustion among US health care workers before and during the COVID-19 pandemic, 2019-2021. *JAMA Netw Open.* 2022;5:e2232748. [PMID: 36129705] doi:10.1001/jamanetworkopen.2022.32748
- West CP, Dyrbye LN, Shanafelt TD. Physician burnout: contributors, consequences and solutions. *J Intern Med.* 2018;283:516-529. [PMID: 29505159] doi:10.1111/joim.12752
- Bianchi R, Brisson R. Burnout and depression: causal attributions and construct overlap. *J Health Psychol.* 2019;24:1574-1580. [PMID: 29139312] doi:10.1177/1359105317740415
- Bianchi R, Schonfeld IS. Defining physician burnout, and differentiating between burnout and depression-I. *Mayo Clin Proc.* 2017;92:1455. [PMID: 28870363] doi:10.1016/j.mayocp.2017.07.007
- Maslach C, Jackson SE, Leiter MP. *Maslach burnout inventory manual.* 3rd ed. Consulting Psychologists Press; 1996:iv.
- Linzer M, Jin JO, Shah P, et al. Trends in clinician burnout with associated mitigating and aggravating factors during the COVID-19 pandemic. *JAMA Health Forum.* 2022;3:e224163. [PMID: 36416816] doi:10.1001/jamahealthforum.2022.4163
- Willard-Grace R, Knox M, Huang B, et al. Burnout and health care workforce turnover. *Ann Fam Med.* 2019;17:36-41. [PMID: 30670393] doi:10.1370/afm.2338
- Fond G, Smith L, Tran B, et al. Unmasking the triad of burnout, absenteeism, and poor sleep among healthcare workers during the third wave of COVID-19 pandemics. Results from the national AMADEUS study. *J Affect Disord.* 2024;355:247-253. [PMID: 38554883] doi:10.1016/j.jad.2024.03.157
- Salyers MP, Bonfils KA, Luther L, et al. The relationship between professional burnout and quality and safety in healthcare: a meta-analysis. *J Gen Intern Med.* 2017;32:475-482. [PMID: 27785668] doi:10.1007/s11606-016-3886-9
- Garratt K. NHS industrial action in England (2022-2024). House of Commons Library. UK Parliament; 2024.
- Fendel JC, Bürkle JJ, Göritz AS. Mindfulness-based interventions to reduce burnout and stress in physicians: a systematic review and meta-analysis. *Acad Med.* 2021;96:751-764. [PMID: 33496433] doi:10.1097/ACM.00000000000003936
- Ramachandran HJ, Bin Mahmud MS, Rajendran P, et al. Effectiveness of mindfulness-based interventions on psychological well-being, burnout and post-traumatic stress disorder among nurses: a systematic review and meta-analysis. *J Clin Nurs.* 2023;32:2323-2338. [PMID: 35187740] doi:10.1111/jocn.16265
- West CP, Dyrbye LN, Erwin PJ, et al. Interventions to prevent and reduce physician burnout: a systematic review and meta-analysis. *Lancet.* 2016;388:2272-2281. [PMID: 27692469] doi:10.1016/S0140-6736(16)31279-X
- Panagioti M, Panagopoulou E, Bower P, et al. Controlled interventions to reduce burnout in physicians: a systematic review and meta-analysis. *JAMA Intern Med.* 2017;177:195-205. [PMID: 27918798] doi:10.1001/jamainternmed.2016.7674
- Salvado M, Marques DL, Pires IM, et al. Mindfulness-based interventions to reduce burnout in primary healthcare professionals: a systematic review and meta-analysis. *Healthcare (Basel).* 2021;9:1342. [PMID: 34683022] doi:10.3390/healthcare9101342
- da Costa BR, Nüesch E, Rutjes AW, et al. Combining follow-up and change data is valid in meta-analyses of continuous outcomes: a meta-epidemiological study. *J Clin Epidemiol.* 2013;66:847-855. [PMID: 23747228] doi:10.1016/j.jclinepi.2013.03.009
- DeCoster J. Spreadsheet for converting effect size measures. 2012. Accessed at <https://www.stat-help.com/spreadsheets/Converting%20effect%20sizes%202012-06-19.xls> on 30 September 2024.
- Rosenthal R. Parametric measures of effect size. In: Cooper H, Hedges LV, eds. *The Handbook of Research Synthesis.* Russell Sage Foundation; 1994:231-244.
- Crippa JAS, Zuardi AW, Guimarães FS, et al; Burnout and Distress Prevention With Cannabidiol in Front-line Health Care Workers Dealing With COVID-19 (BONSAI) Trial Investigators. Efficacy and safety of cannabidiol plus standard care vs standard care alone for the treatment of emotional exhaustion and burnout among frontline health care workers during the COVID-19 pandemic: a randomized clinical trial. *JAMA Netw Open.* 2021;4:e2120603. [PMID: 34387679] doi:10.1001/jamanetworkopen.2021.20603
- Higgins JP, Thompson SG, Deeks JJ, et al. Measuring inconsistency in meta-analyses. *BMJ.* 2003;327:557-560. [PMID: 12958120] doi:10.1136/bmj.327.7414.557
- Cummings P. Arguments for and against standardized mean differences (effect sizes). *Arch Pediatr Adolesc Med.* 2011;165:592-596. [PMID: 21727271] doi:10.1001/archpediatrics.2011.97
- Al-Jdeetawey NA, Al-Hammouri MM, Rababah JA, et al. Effectiveness of a brief mindfulness-based intervention on

compassion fatigue and compassion satisfaction in pediatric nurses. *Worldviews Evid Based Nurs.* 2025;22:e70002. [PMID: 39936312] doi:10.1111/wvn.70002

24. Alexander GK, Rollins K, Walker D, et al. Yoga for self-care and burnout prevention among nurses. *Workplace Health Saf.* 2015;63:462-470. [PMID: 26419795] doi:10.1177/2165079915596102

25. Ameli R, Sinaï N, West CP, et al. Effect of a brief mindfulness-based program on stress in health care professionals at a US biomedical research hospital: a randomized clinical trial. *JAMA Netw Open.* 2020;3:e2013424. [PMID: 32840621] doi:10.1001/jamanetworkopen.2020.13424

26. Amutio A, Martínez-Taboada C, Delgado LC, et al. Acceptability and effectiveness of a long-term educational intervention to reduce physicians' stress-related conditions. *J Contin Educ Health Prof.* 2015;35:255-260. [PMID: 26953856] doi:10.1097/CEH.0000000000000002

27. Asuero AM, Queraltó JM, Pujol-Ribera E, et al. Effectiveness of a mindfulness education program in primary health care professionals: a pragmatic controlled trial. *J Contin Educ Health Prof.* 2014;34:4-12. [PMID: 24648359] doi:10.1002/chp.21211

28. Bhardwaj P, Pathania M, Bahurupi Y, et al. Efficacy of mHealth aided 12-week meditation and breath intervention on change in burnout and professional quality of life among health care providers of a tertiary care hospital in north India: a randomized wait-list-controlled trial. *Front Public Health.* 2023;11:1258330. [PMID: 38026380] doi:10.3389/fpubh.2023.1258330

29. Boden LM, Rodriguez C, Kelly J, et al. Mindfulness applications: can they serve as a stress, anxiety, and burnout reduction tool in orthopaedic surgery training? A randomized control trial. *JBJS Open Access.* 2023;8:e22.00114. [PMID: 37497194] doi:10.2106/JBJS.OA.22.00114

30. Bonamer JI, Kutash M, Hartranft SR, et al. Clinical nurse well-being improved through transcendental meditation: a multimethod randomized controlled trial. *J Nurs Adm.* 2024;54:16-24. [PMID: 38078959] doi:10.1097/NNA.0000000000001372

31. Faramarzi S, Dehghani A, Hojat M. Comparison of the effect of yoga and aerobic exercise on nurses' burnout: a randomized controlled trial. *Journal of Nursing and Midwifery Sciences.* 2024;11: e142568. [10.5812/jnms-142568]

32. Gan R, Chen S, Xue J. Feasibility and effectiveness of the mindfulness-based stress reduction programs on relieving burnout of healthcare providers during the COVID-19 pandemic: a pilot randomized controlled trial in China. *Hum Resour Health.* 2024;22:79. [PMID: 39567987] doi:10.1186/s12960-024-00959-0

33. Hicks MD, Braden LA, Walsh EM, et al. Mobile meditation for improving quality of life, anxiety and depression among surgical residents and faculty. *J Laryngol Otol.* 2022;136:1034-1038. [PMID: 34674779] doi:10.1017/S0022215121003091

34. Hilcove K, Marceau C, Thekdi P, et al. Holistic nursing in practice: mindfulness-based yoga as an intervention to manage stress and burnout. *J Holist Nurs.* 2021;39:29-42. [PMID: 32460584] doi:10.1177/0898010120921587

35. Jaiswal S, Purpura SR, Manchanda JK, et al. Design and implementation of a brief digital mindfulness and compassion training app for health care professionals: cluster randomized controlled trial. *JMIR Ment Health.* 2024;11:e49467. [PMID: 38252479] doi:10.2196/49467

36. Joshi SP, Wong A-KI, Brucker A, et al. Efficacy of transcendental meditation to reduce stress among health care workers: a randomized clinical trial. *JAMA Netw Open.* 2022;5:e2231917. [PMID: 36121655] doi:10.1001/jamanetworkopen.2022.31917

37. Liu L, Tian L, Jiang J, et al. Effect of an online mindfulness-based stress reduction intervention on postpandemic era nurses' subjective well-being, job burnout, and psychological adaptation. *Holist Nurs Pract.* 2023;37:244-252. [PMID: 37595116] doi:10.1097/HNP.0000000000000603

38. Loiselle M, Brown C, Travis F, et al. Effects of transcendental meditation on academic physician burnout and depression: a mixed methods randomized controlled trial. *J Contin Educ Health Prof.* 2023;43:164-171. [PMID: 36702122] doi:10.1097/CEH.0000000000000472

39. Mackenzie CS, Poulin PA, Seidman-Carlson R. A brief mindfulness-based stress reduction intervention for nurses and nurse aides. *Appl Nurs Res.* 2006;19:105-109. [PMID: 16728295] doi:10.1016/j.apnr.2005.08.002

40. Mandal S, Misra P, Sharma G, et al. Effect of structured yoga program on stress and professional quality of life among nursing staff in a tertiary care hospital of Delhi-a small scale phase-II trial. *J Evid Based Integr Med.* 2021;26:2515690X21991998. [PMID: 33567888] doi:10.1177/2515690X21991998

41. Naveen KH, Singh D, Srinivasan S, et al. Effect of tele-yoga on burnout, mental health and immune markers of health care workers on COVID-19 duty: an open-label parallel group pilot randomized controlled trial. *Complement Ther Med.* 2024;87:103109. [PMID: 39521190] doi:10.1016/j.ctim.2024.103109

42. Othman SY, Hassan NI, Mohamed AM. Effectiveness of mindfulness-based interventions on burnout and self-compassion among critical care nurses caring for patients with COVID-19: a quasi-experimental study. *BMC Nurs.* 2023;22:305. [PMID: 37674145] doi:10.1186/s12912-023-01466-8

43. Pérez V, Menéndez-Crispín EJ, Sarabia-Cobo C, et al. Mindfulness-based intervention for the reduction of compassion fatigue and burnout in nurse caregivers of institutionalized older persons with dementia: a randomized controlled trial. *Int J Environ Res Public Health.* 2022;19:11441. [PMID: 36141714] doi:10.3390/ijerph191811441

44. Pratt EH, Hall L, Jennings C, et al. Mobile mindfulness for psychological distress and burnout among frontline COVID-19 nurses: a pilot randomized trial. *Ann Am Thorac Soc.* 2023;20:1475-1482. [PMID: 37289650] doi:10.1513/AnnalsATS.202301-025OC

45. Purdie DR, Federman M, Chin A, et al. Hybrid delivery of mindfulness meditation and perceived stress in pediatric resident physicians: a randomized clinical trial of in-person and digital mindfulness meditation. *J Clin Psychol Med Settings.* 2023;30:425-434. [PMID: 35778655] doi:10.1007/s10880-022-09896-3

46. Schroeder DA, Stephens E, Colgan D, et al. A brief mindfulness-based intervention for primary care physicians: a pilot randomized controlled trial. *Am J Lifestyle Med.* 2018;12:83-91. [PMID: 30202383] doi:10.1177/1559827616629121

47. Seidel LW, Dane FC, Carter KF. Brief mindfulness practice course for healthcare providers. *J Nurs Adm.* 2021;51:395-400. [PMID: 34405978] doi:10.1097/NNA.0000000000001035

48. Çelik AS, Kılınç T. The effect of laughter yoga on perceived stress, burnout, and life satisfaction in nurses during the pandemic: a randomized controlled trial. *Complement Ther Clin Pract.* 2022;49:101637. [PMID: 35810525] doi:10.1016/j.ctcp.2022.101637

49. Talebianzadeh N, Salamat E, Abbasi M, et al. The impact of mindfulness-based stress reduction training on the occupational stress and burnout experienced by nurses in geriatric wards? A randomized controlled trial. *Geriatr Nurs.* 2024;58:373-381. [PMID: 38878737] doi:10.1016/j.gerinurse.2024.05.034

50. Verweij H, van Ravesteijn H, van Hooff MLM, et al. Mindfulness-based stress reduction for residents: a randomized controlled trial. *J Gen Intern Med.* 2018;33:429-436. [PMID: 29256091] doi:10.1007/s11606-017-4249-x

51. Xu HG, Eley R, Kynoch K, et al. Effects of mobile mindfulness on emergency department work stress: a randomised controlled trial. *Emerg Med Australas.* 2022;34:176-185. [PMID: 34378320] doi:10.1111/1742-6723.13836

52. Axisa C, Nash L, Kelly P, et al. Burnout and distress in Australian physician trainees: evaluation of a wellbeing workshop. *Australas Psychiatry.* 2019;27:255-261. [PMID: 30854868] doi:10.1177/1039856219833793

53. Berger R, Gelkopf M. An intervention for reducing secondary traumatization and improving professional self-efficacy in well baby clinic nurses following war and terror: a random control group trial. *Int J Nurs Stud.* 2011;48:601-610. [PMID: 20934702] doi:10.1016/j.ijnurstu.2010.09.007

54. Boucher VG, Haight BL, Hives BA, et al. Effects of 12 weeks of at-home, application-based exercise on health care workers' depressive symptoms, burnout, and absenteeism: a randomized clinical trial. *JAMA Psychiatry.* 2023;80:1101-1109. [PMID: 37556150] doi:10.1001/jamapsychiatry.2023.2706

55. Dahlgren A, Tucker P, Epstein M, et al. Randomised control trial of a proactive intervention supporting recovery in relation to stress and irregular work hours: effects on sleep, burn-out, fatigue and somatic symptoms. *Occup Environ Med.* 2022;79:460-468. [PMID: 35074887] doi:10.1136/oemed-2021-107789

56. Eriksson T, Germundsjö L, Åström E, et al. Mindful self-compassion training reduces stress and burnout symptoms among practicing psychologists: a randomized controlled trial of a brief web-based intervention. *Front Psychol.* 2018;9:2340. [PMID: 30538656] doi:10.3389/fpsyg.2018.02340

57. Ferreres-Galán V, Navarro-Haro MV, Peris-Baquero Ó, et al. Assessment of acceptability and initial effectiveness of a unified protocol prevention program to train emotional regulation skills in female nursing professionals during the COVID-19 pandemic. *Int J Environ Res Public Health.* 2022;19:5715. [PMID: 35565110] doi:10.3390/ijerph19095715

58. Kharatzadeh H, Alavi M, Mohammadi A, et al. Emotional regulation training for intensive and critical care nurses. *Nurs Health Sci.* 2020;22:445-453. [PMID: 31975520] doi:10.1111/nhs.12679

59. Kirykowicz K, Jaworski B, Owen J, et al. Feasibility, acceptability and preliminary efficacy of a mental health self-management app in clinicians working during the COVID-19 pandemic: a pilot randomised controlled trial. *Psychiatry Res.* 2023;329:115493. [PMID: 37778231] doi:10.1016/j.psychres.2023.115493

60. Monfries N, Sandhu N, Millar K. A smartphone app to reduce burnout in the emergency department: a pilot randomized controlled trial. *Workplace Health Saf.* 2023;71:181-187. [PMID: 36373628] doi:10.1177/21650799221123261

61. Prudenzi A, Graham CD, Flaxman PE, et al. A workplace Acceptance and Commitment Therapy (ACT) intervention for improving healthcare staff psychological distress: a randomised controlled trial. *PLoS One.* 2022;17:e0266357. [PMID: 35442963] doi:10.1371/journal.pone.0266357

62. Rajeswari H, Sreelekha BK, Nappinai S, et al. Impact of accelerated recovery program on compassion fatigue among nurses in South India. *Iran J Nurs Midwifery Res.* 2020;25:249-253. [PMID: 32724772] doi:10.4103/ijnmr.IJNMR_218_19

63. Trockel MT, Menon NK, Makowski MS, et al. IMPACT: evaluation of a controlled organizational intervention using influential peers to promote professional fulfillment. *Mayo Clin Proc.* 2023;98:75-87. [PMID: 36464536] doi:10.1016/j.mayocp.2022.06.035

64. Yektatalab S, Honarmandnejad K, Janghorban R, et al. Effect of web-based life skills education on nurses' job burnout. *Turkish Online Journal of Distance Education.* 2020;21. doi:10.17718/tojde.727974.

65. Sawyer AT, Tao H, Bailey AK. The impact of a psychoeducational group program on the mental well-being of unit-based nurse leaders: a randomized controlled trial. *Int J Environ Res Public Health.* 2023;20:6035. [PMID: 37297639] doi:10.3390/ijerph20116035

66. Super A, Yarker J, Lewis R, et al. Developing self-compassion in healthcare professionals utilising a brief online intervention: a randomised waitlist control trial. *Int J Environ Res Public Health.* 2024;21:1346. [PMID: 39457319] doi:10.3390/ijerph21101346

67. Fong JSY, Hui ANN, Ho KM, et al. Brief mindful coloring for stress reduction in nurses working in a Hong Kong hospital during COVID-19 pandemic: a randomized controlled trial. *Medicine* (Baltimore). 2022;101:e31253. [PMID: 36316873] doi:10.1097/MD.00000000000031253

68. Ho AHY, Tan-Ho G, Ngo TA, et al. A novel mindful-compassion art-based therapy for reducing burnout and promoting resilience among healthcare workers: findings from a waitlist randomized control trial. *Front Psychol.* 2021;12:744443. [PMID: 34744918] doi:10.3389/fpsyg.2021.744443

69. Pieper C, Lausen M, Kröckert D, et al. Creative strengthening groups as a potential intervention to enhance job satisfaction and reduce levels of burnout in healthcare professionals: results from the randomized controlled trial UPGRADE. *BMC Health Serv Res.* 2025;25:566. [PMID: 40247351] doi:10.1186/s12913-025-12644-6

70. Laker V, Simmonds-Buckley M, Delgadillo J, et al. Pragmatic randomized controlled trial of the Mind Management Skills for Life Programme as an intervention for occupational burnout in mental healthcare professionals. *J Ment Health.* 2023;32:752-760. [PMID: 36924140] doi:10.1080/09638237.2023.2182423

71. Mache S, Baresi L, Bernburg M, et al. Being prepared to work in gynecology medicine: evaluation of an intervention to promote junior gynecologists professionalism, mental health and job satisfaction. *Arch Gynecol Obstet.* 2017;295:153-162. [PMID: 27771761] doi:10.1007/s00404-016-4223-6

72. Mache S, Bernburg M, Baresi L, et al. Mental health promotion for junior physicians working in emergency medicine: evaluation of a pilot study. *Eur J Emerg Med.* 2018;25:191-198. [PMID: 27879536] doi:10.1097/MEJ.0000000000000434

73. Medisauskaite A, Kamau C. Reducing burnout and anxiety among doctors: randomized controlled trial. *Psychiatry Res.* 2019;274:383-390. [PMID: 30852432] doi:10.1016/j.psychres.2019.02.075

74. Özbaş AA, Tel H. The effect of a psychological empowerment program based on psychodrama on empowerment perception and burnout levels in oncology nurses: psychological empowerment in oncology nurses. *Palliat Support Care.* 2016;14:393-401. [PMID: 26466981] doi:10.1017/S1478951515001121

75. Pehlivan T, Güner P. Effect of a compassion fatigue resiliency program on nurses' professional quality of life, perceived stress, resilience: a randomized controlled trial. *J Adv Nurs.* 2020;76:3584-3596. [PMID: 33009840] doi:10.1111/jan.14568

76. Profit J, Adair KC, Cui X, et al. Randomized controlled trial of the "WISER" intervention to reduce healthcare worker burnout. *J Perinatol.* 2021;41:2225-2234. [PMID: 34366432] doi:10.1038/s41372-021-01100-y

77. Bondre AP, Singh S, Singh A, et al. Evaluation of a positive psychological intervention to reduce work stress among rural community health workers in India: results from a randomized pilot study. *J Happiness Stud.* 2025;26:27. [PMID: 39975944] doi:10.1007/s10902-024-00852-6

78. Çelebi I, Balci E. The effect of a coping training program on the burnout levels of ambulance staff during the COVID-19 pandemic: a clinical trial. *Work.* 2025;80:720-727. [PMID: 39973700] doi:10.1177/10519815241289656

79. Sexton JB, Adair KC. Well-being outcomes of health care workers after a 5-hour continuing education intervention: the WELL-B randomized clinical trial. *JAMA Netw Open.* 2024;7:e2434362. [PMID: 39298170] doi:10.1001/jamanetworkopen.2024.34362

80. Bragard I, Etienne AM, Merckaert I, et al. Efficacy of a communication and stress management training on medical residents' self-efficacy, stress to communicate and burnout: a randomized controlled study. *J Health Psychol.* 2010;15:1075-1081. [PMID: 20453053] doi:10.1177/1359105310361992

81. Kesselheim J, Baker JN, Kersun L, et al; Collaborative Network of Pediatric Hematology-Oncology Fellowship Program Directors. Humanism and professionalism training for pediatric hematology-oncology fellows: results of a multicenter randomized trial. *Pediatr Blood Cancer.* 2020;67:e28308. [PMID: 32729211] doi:10.1002/pbc.28308

82. Kubota Y, Okuyama T, Uchida M, et al. Effectiveness of a psycho-oncology training program for oncology nurses: a randomized controlled trial. *Psychooncology*. 2016;25:712-718. [PMID: 26449801] doi:10.1002/pon.4000

83. McLeod HJ, Densley L, Chapman K. The effects of training in behaviour modification strategies on stress, burnout, and therapeutic attitudes in frontline inpatient mental health nurses. *Australian Journal of Rehabilitation Counselling*. 2006;12:1-10.

84. Morita T, Tamura K, Kusajima E, et al. Nurse education program on meaninglessness in terminally ill cancer patients: a randomized controlled study of a novel two-day workshop. *J Palliat Med*. 2014;17:1298-1305. [PMID: 25225952] doi:10.1089/jpm.2013.0559

85. Osiurak S, Taylor NF, Albiston T, et al. Interactive clinical supervision training added to self-education leads to small improvements in the effectiveness of clinical supervision of physiotherapists: a randomised trial. *J Physiother*. 2024;70:33-39. [PMID: 38049352] doi:10.1016/j.jphys.2023.11.002

86. Pollak KI, Gao X, Arnold RM, et al. Feasibility of using communication coaching to teach palliative care clinicians motivational interviewing. *J Pain Symptom Manage*. 2020;59:787-793. [PMID: 31765759] doi:10.1016/j.jpainsymman.2019.11.010

87. Pollak KI, Gao X, Kennedy D, et al. Assessing the feasibility and acceptability of a peer-based communication coaching model among hospital clinicians. *PEC Innov*. 2022;1:100072. [PMID: 37213762] doi:10.1016/j.pecinn.2022.100072

88. Redhead K, Bradshaw T, Braynion P, et al. An evaluation of the outcomes of psychosocial intervention training for qualified and unqualified nursing staff working in a low-secure mental health unit. *J Psychiatr Ment Health Nurs*. 2011;18:59-66. [PMID: 21214685] doi:10.1111/j.1365-2850.2010.01629.x

89. Ricou B, Gigon F, Durand-Steiner E, et al. Initiative for burnout of ICU caregivers: feasibility and preliminary results of a psychological support. *J Intensive Care Med*. 2020;35:562-569. [PMID: 29642743] doi:10.1177/0885066618768223

90. Wei R, Ji H, Li J, et al. Active intervention can decrease burnout in Ed nurses. *J Emerg Nurs*. 2017;43:145-149. [PMID: 27637407] doi:10.1016/j.jen.2016.07.011

91. Antonsen KK, Lyhne JD, Johnsen AT, et al. Assessing the effect of On-site supportive communication training (On-site SCT) on doctor burnout: a randomized controlled trial. *BMC Med Educ*. 2025;25:112. [PMID: 39849449] doi:10.1186/s12909-025-06710-0

92. Gunasingam N, Burns K, Edwards J, et al. Reducing stress and burnout in junior doctors: the impact of debriefing sessions. *Postgrad Med J*. 2015;91:182-187. [PMID: 25755266] doi:10.1136/postgradmedj-2014-132847

93. Huang H, Zhang H, Xie Y, et al. Effect of Balint group training on burnout and quality of work life among intensive care nurses: a randomized controlled trial. *Neurology, Psychiatry and Brain Research*. 2020;35:16-21. doi:10.1016/j.npbr.2019.12.002

94. Huang L, Harsh J, Cui H, et al. A randomized controlled trial of Balint groups to prevent burnout among residents in China. *Front Psychiatry*. 2019;10:957. [PMID: 32116808] doi:10.3389/fpsyg.2019.00957

95. Shan Q, Leonhart R, Zhijuan X, et al. Positive effect of Balint group on burnout and self-efficacy of head nurses in China: a randomized controlled trial. *Front Psychiatry*. 2023;14:1265976. [PMID: 38260785] doi:10.3389/fpsyg.2023.1265976

96. Üstün G. The effects of online support program for nurses with COVID-19 patients on the professional quality of life and psychological empowerment perception: a randomized controlled trial. *J Psychiatr Nurs*. 2023;14:15-23. doi:10.14744/phd.2022.24445.

97. West CP, Dyrbye LN, Satele DV, et al. Colleagues Meeting to Promote and Sustain Satisfaction (COMPASS) groups for physician well-being: a randomized clinical trial. *Mayo Clin Proc*. 2021;96:2606-2614. [PMID: 34366134] doi:10.1016/j.mayocp.2021.02.028

98. Dyrbye L, West CP, Richards ML, et al. A randomized, controlled study of an online intervention to promote job satisfaction and well-being among physicians. *Burn Res*. 2016;3:69-75. doi:10.1016/j.burn.2016.06.002.

99. Dyrbye LN, Gill PR, Satele DV, et al. Professional coaching and surgeon well-being: a randomized controlled trial. *Ann Surg*. 2023;277:565-571. [PMID: 36000783] doi:10.1097/SLA.0000000000005678

100. Dyrbye LN, Shanafelt TD, Gill PR, et al. Effect of a professional coaching intervention on the well-being and distress of physicians: a pilot randomized clinical trial. *JAMA Intern Med*. 2019;179:1406-1414. [PMID: 31380892] doi:10.1001/jamainternmed.2019.2425

101. Fainstad T, Mann A, Suresh K, et al. Effect of a novel online group-coaching program to reduce burnout in female resident physicians: a randomized clinical trial. *JAMA Netw Open*. 2022;5:e2210752. [PMID: 35522281] doi:10.1001/jamanetworkopen.2022.10752

102. Fainstad T, Rodriguez C, Kreisel C, et al. Impact of an online group-coaching program on ambulatory faculty physician well-being: a randomized trial. *J Am Board Fam Med*. 2025;37:1055-1071. [PMID: 39725465] doi:10.3122/jabfm.2024.240022R1

103. Kiser SB, Sterns JD, Lai PY, et al. Physician coaching by professionally trained peers for burnout and well-being: a randomized clinical trial. *JAMA Netw Open*. 2024;7:e245645. [PMID: 38607628] doi:10.1001/jamanetworkopen.2024.5645

104. Mann A, Shah AN, Thibodeau PS, et al. Online well-being group coaching program for women physician trainees: a randomized clinical trial. *JAMA Netw Open*. 2023;6:e2335541. [PMID: 37792378] doi:10.1001/jamanetworkopen.2023.35541

105. Bagheri T, Fatemi MJ, Payandeh H, et al. The effects of stress-coping strategies and group cognitive-behavioral therapy on nurse burnout. *Ann Burns Fire Disasters*. 2019;32:184-189. [PMID: 32313531]

106. Gunusen NP, Ustun B. An RCT of coping and support groups to reduce burnout among nurses. *Int Nurs Rev*. 2010;57:485-492. [PMID: 21050201] doi:10.1111/j.1466-7657.2010.00808.x

107. Iyadurai L, Highfield J, Kanstrup M, et al. Reducing intrusive memories after trauma via an imagery-competing task intervention in COVID-19 intensive care staff: a randomised controlled trial. *Transl Psychiatry*. 2023;13:290. [PMID: 37658043] doi:10.1038/s41398-023-02578-0

108. Lee S, Rozybakieva Z, Asimov M, et al. Coping strategy as a way to prevent emotional burnout in primary care doctors: a randomized controlled trial. *Archives of the Balkan Medical Union*. 2020;55:398-409. [10.31688/ABMU.2020.55.3.04]

109. Partlak Gümüşen N, Şengün İnan F, Üstün B, et al. The effect of a nurse-led intervention program on compassion fatigue, burnout, compassion satisfaction, and psychological distress in nurses: a randomized controlled trial. *Perspect Psychiatr Care*. 2022;58:1576-1586. [PMID: 34706071] doi:10.1111/ppc.12965

110. Watanabe N, Matsuoka Y, Kumachi M, et al. Omega-3 fatty acids for a better mental state in working populations - Happy Nurse Project: a 52-week randomized controlled trial. *J Psychiatr Res*. 2018;102:72-80. [PMID: 29627596] doi:10.1016/j.jpsychires.2018.03.015

111. Brazier A, Larson E, Xu Y, et al. 'Dear Doctor': a randomised controlled trial of a text message intervention to reduce burnout in trainee anaesthetists. *Anaesthesia*. 2022;77:405-415. [PMID: 35026055] doi:10.1111/anae.15643

112. Goktas S, Gezginci E, Kartal H. The effects of motivational messages sent to emergency nurses during the COVID-19 pandemic on job satisfaction, compassion fatigue, and communication skills: a randomized controlled trial. *J Emerg Nurs*. 2022;48:547-558. [PMID: 35864005] doi:10.1016/j.jen.2022.06.001

113. Zhang F, Zhang J, Chen Z-L, et al. Effects of a gratitude intervention on job engagement among newly recruited nurses: a randomized clinical trial. *Work*. 2025;80:1191-1201. [PMID: 40297871] doi:10.1177/10519815241289340

114. Brooks DM, Bradt J, Eyre L, et al. Creative approaches for reducing burnout in medical personnel. *Arts Psychother.* 2010;37:255-263. [doi:10.1016/j.aip.2010.05.001]

115. Emani R, Ghavami H, Radfar M, et al. Impact of chemotherapy on professional quality of life in intensive care unit nurses: a randomized controlled trial. *Fatigue: Biomedicine, Health & Behavior.* 2020;8:121-129. [doi:10.1080/21641846.2020.1782058]

116. Li X, Li X, Wang X, et al. Moxibustion for medical personnel with negative emotion and insomnia during COVID-19 pandemic: a randomized, controlled trial. *Integr Med Res.* 2023;12:100974. [PMID: 37637182] [doi:10.1016/j.imr.2023.100974]

117. Matthew J, Mike L, Huang H-C, et al. Effects of personalized music intervention on nurse burnout: a feasibility randomized controlled trial. *Nurs Health Sci.* 2022;24:836-844. [PMID: 36089738] [doi:10.1111/nhs.12984]

118. Shin YK, Lee SY, Lee JM, et al. Effects of short-term inhalation of patchouli oil on professional quality of life and stress levels in emergency nurses: a randomized controlled trial. *J Altern Complement Med.* 2020;26:1032-1038. [PMID: 32907352] [doi:10.1089/acm.2020.0206]

119. Ghasemipur M, Dehghani A, Hojat M. The effect of the spiritual health plan on the nurses' burnout: an experimental study. *Journal for the Study of Spirituality.* 2024;14:21-31. [doi:10.1080/20440243.2024.2334952].

120. Moss M, Edelblute A, Sinn H, et al. The effect of creative arts therapy on psychological distress in health care professionals. *Am J Med.* 2022;135:1255-1262.e5. [PMID: 35576997] [doi:10.1016/j.amjmed.2022.04.016]

121. Haslam A, Tuia J, Miller SL, et al. Systematic review and meta-analysis of randomized trials testing interventions to reduce physician burnout. *Am J Med.* 2024;137:249-257.e1. [PMID: 37890569] [doi:10.1016/j.amjmed.2023.10.003]

122. West CP, Tan AD, Habermann TM, et al. Association of resident fatigue and distress with perceived medical errors. *JAMA.* 2009;302:1294-1300. [PMID: 19773564] [doi:10.1001/jama.2009.1389]

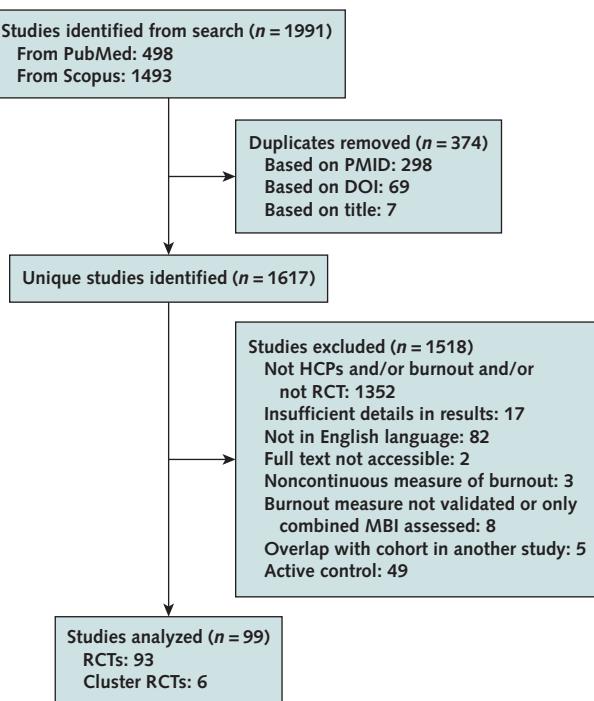
123. Shanafelt TD, Balch CM, Bechamps G, et al. Burnout and medical errors among American surgeons. *Ann Surg.* 2010;251:995-1000. [PMID: 19934755] [doi:10.1097/SLA.0b013e3181bfdab3]

124. Creswell JD. Mindfulness interventions. *Annu Rev Psychol.* 2017;68:491-516. [PMID: 27687118] [doi:10.1146/annurev-psych-042716-051139]

125. Gazelle G, Liebschutz JM, Riess H. Physician burnout: coaching a way out. *J Gen Intern Med.* 2015;30:508-513. [PMID: 25527340] [doi:10.1007/s11606-014-3144-y]

126. Lee M, Cha C. Interventions to reduce burnout among clinical nurses: systematic review and meta-analysis. *Sci Rep.* 2023;13:10971. [PMID: 37414811] [doi:10.1038/s41598-023-38169-8]

127. Meredith LS, Bouskill K, Chang J, et al. Predictors of burnout among US healthcare providers: a systematic review. *BMJ Open.* 2022;12:e054243. [PMID: 36008065] [doi:10.1136/bmjopen-2021-054243]


128. Carlasare LE, Wang H, West CP, et al. Associations between organizational support, burnout, and professional fulfillment among US physicians during the first year of the COVID-19 pandemic. *J Healthc Manag.* 2024;69:368-386. [PMID: 39240266] [doi:10.1097/JHM-D-23-00124]

129. Zhang H, Hoe VCW, Wong LP. The association between burnout, perceived organizational support, and perceived professional benefits among nurses in China. *Heliyon.* 2024;10:e39371. [PMID: 39498039] [doi:10.1016/j.heliyon.2024.e39371]

130. Collett G, Emad A, Gupta AK. The impact of workplace support components on the mental health and burnout of UK-based healthcare professionals: insights from the CoPE-HCP cohort study. *Clin Med (Lond).* 2025;25:100324. [PMID: 40334943] [doi:10.1016/j.clinme.2025.100324]

Author Contributions: Conception and design: A.K. Gupta. Analysis and interpretation of the data: G. Collett, A. Eltayeb, A.K. Gupta. Drafting of the article: G. Collett, A. Korszun, K. Rice, A.K. Gupta. Critical revision of the article for important intellectual content: G. Collett, J. Gupta, L. Sharples, K. Rice, A.K. Gupta. Final approval of the article: G. Collett, J. Gupta, A. Eltayeb, A. Korszun, L. Sharples, K. Rice, A.K. Gupta. Statistical expertise: L. Sharples, K. Rice. Obtaining of funding: A.K. Gupta. Administrative, technical, or logistic support: J. Gupta, A.K. Gupta. Collection and assembly of data: G. Collett, A.K. Gupta.

Appendix Figure. Evidence search and selection.

Flow chart of study selection for meta-analysis. DOI = digital object identifier; HCP = health care professional; MBI = Maslach Burnout Inventory; PMID = PubMed identifier; RCT = randomized controlled trial.